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Real and bounded elliptic solutions suitable for applying the Khare-Sukhatme super-
position procedure are presented and used to generate superposition solutions of the
generalized modified Kadomtsev-Petviashvili equation (gmKPE) and the nonlinear
cubic-quintic Schrödinger equation (NLCQSE).
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1. INTRODUCTION

As has been shown recently (Cooper et al., 2002; Khare et al., 2002a,b, 2003)
(periodic) Jacobian elliptic functions (if they are solutions of a certain nonlinear
wave and evolution equation (NLWEE)) are start solutions for generating new so-
lutions of the NLWEE by a linear superposition procedure. Thus, elliptic functions
are of specific importance for finding solutions of NLWEEs. On the other hand,
based on a symmetry reduction method, a technique to obtain elliptic solutions
of certain NLWEEs was proposed and applied to the gmKPE and the NLCQSE
(Schürmann, 1996; Schürmann et al., 2004a; Schürmann et al., 2004b). It is the
aim of the present paper to combine these approaches in order to obtain gen-
eral elliptic solutions that can serve as start solutions for superposition (“suitable
solutions”).

The superposition procedure can be described as follows (Cooper et al.,
2002): If a solution of a NLWEE[ψ(x, y, t)] = 0 can be expressed in terms of
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Jacobian elliptic functions

�(x, y, t) =
l∑

ν=0

aνqnν [µ(x + ky + vt),m] , (1)

where qn is anyone of the Jacobian elliptic functions and aν, µ, c are constants,
then the superposition solution (Cooper et al., 2002, Eqs. (4), (14))

�̃(x, y, t) =
p∑

λ=1

l∑
ν=0

aνqnν

[
µ(x + ky + vpt) + n(λ − 1)K(m)

p
,m

]
, (2)

where n ∈ {2, 4} (depending on the periodicity of the Jacobian elliptic function
and on ν) and K(m),m denote the complete elliptic integral of first kind and
the modulus parameter (0 ≤ m ≤ 1), respectively, also may be a solution of the
NLWEE. The number p is integer (it depends on the NLWEE whether it is even or/
and odd) and the speed vp can be determined by using certain remarkable, recently
established, identities involving Jacobian elliptic functions (Khare et al., 2002a,
2003). It should be noted, that the existence of solutions (1) of a certain NLWEE
does not necessarily imply the existence of a solution (2). As shown in Cooper
et al. (2002) and Khare et al. (2002b) solutions (2) exist for the Korteweg-de Vries
equation (KdV), the Kadomtsev-Petviashvili equation (KP), the nonlinear (cubic)
Schrödinger equation (NLSE), the λφ4−field equation, the Sine-Gordon equation
and the Boussinesq equation. On the other hand, it may happen, as will be seen
below, that a solution (1) is known but does not lead to a solution (2). It is crucial
for the procedure, that appropriate relations between Jacobian elliptic functions
are known.

The symmetry reduction approach can be outlined as follows (Schürmann
et al., 2004b): The NLWEE[ψ(x, t)] = 0 is reduced by an appropriate transfor-
mation ψ → f (e. g., ψ(x, t) = f (z), z = x − ct), where f is supposed to obey
the ordinary nonlinear differential equation (“basic equation”)(

df (z)

dz

)2

= αf 4 + 4βf 3 + 6γf 2 + 4δf + ε ≡ R(f ), (3)

(with real z, f (z), α, β, γ , δ, ε), leading to an equation P (f ) = 0, where P denotes
a polynomial in f . Vanishing coefficients in the polynomial equation P (f ) = 0
imply equations which partly determine the coefficients α, β, γ , δ, ε in Equation
(3). In general, the coefficients depend on the structure and parameters of the
NLWEE and, finally, on the parameters of the transformation ψ → f . Thus, the
problem of finding a solution of the NLWEE is reduced to finding an appropriate
transformation that leads to the basic equation (3).
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As is well known (Weierstrass, 1915; Whittaker et al., 1927) the solution
f (z) of Eq. (3) can be written as

f (z) = f0 + R′(f0)

4[℘(z; g2, g3) − 1
24R′′(f0)]

, (4)

where f0 is a simple root of R(f )4 and the prime denotes differentiation with
respect to f .

The invariants g2, g3 of Weierstrass’ elliptic function ℘(z; g2, g3) are related
to the coefficients of R(f ) by (Chandrasekharan, 1985)

g2 = αε − 4βδ + 3γ 2, (5)

g3 = αγ ε + 2βγ δ − αδ2 − γ 3 − εβ2. (6)

The discriminant (of ℘ and R (Chandrasekharan, 1985))

� = g3
2 − 27g2

3, (7)

is suitable to classify the behaviour of f (z). The conditions

� �= 0 or � = 0, g2 > 0, g3 > 0 (8)

lead to periodic solutions (Schürmann et al., 2004b), whereas the conditions
(Abramowitz et al., 1972)

� = 0, g2 ≥ 0, g3 ≤ 0 (9)

are associated with solitary wave like solutions.
Physical solutions f (z) must be real and bounded. Considering the phase

diagram of R(f ) (Schürmann, 1996; Drazin, 1983) one obtains conditions, ex-
pressed in terms of the coefficients of the basic equation, that determine physical
solutions. For convenience these conditions are referred to as the phase diagram
conditions (PDC) in the following.

2. ELLIPTIC START SOLUTIONS FOR SUPERPOSITION

To apply the superposition procedure it is important to know whether a
solution of the NLWEE according to (1) exists. To check this it is useful to rewrite

4 The general solution of Eq. (3) reads (Weierstrass, 1915; Whittaker et al., 1927)

f (z) = f0 +
√

R(f0) d℘(z;g2,g3)
dz

+ 1
2 R′(f0)[℘(z; g2, g3) − 1

24 R′′(f0)] + 1
24 R(f0)R′′′(f0)

2[℘(z; g2, g3) − 1
24 R′′(f0)]2 − 1

48 R(f0)R′′′′(f0)
.
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Weierstrass’ function ℘ as5

℘(z) = e3 + e1 − e3

sn2(
√

e1 − e3z,m)
, (10)

where e1 ≥ e2 ≥ e3 denote the roots of the equation

4s3 − g2s − g3 = 0. (11)

Substitution of Eq. (10) into Eq. (4) yields6

f (z)= (αf0
3 + 4βf0

2 + 2e3f0 + 5γf0 + 2δ)sn2(
√

e1 − e3z,m) + 2(e1 − e3)f0

(−αf0
2 − 2βf0 + 2e3 − γ )sn2(

√
e1 − e3z,m) + 2(e1 − e3)

,

(12)
with m = e2−e3

e1−e3
. Comparison with Eq. (1) shows that

−αf0
2 − 2βf0 + 2e3 − γ = 0 (13)

is a necessary and sufficient condition that defines the subset of solutions (1). If
α = 0 holds the simple root f0 of R(f ) can be choosen such that Eq. (13) and
PDC are satisfied.7 If α �= 0 and β = δ = 0 Eq. (13) is satisfied also. If α �= 0
and β �= 0, δ = ε = 0, Eq. (13), PDC, and the condition � = 0, g3 > 0 are not
consistent, so that trigonometric functions (which are possible for � = 0, g3 > 0)
are not suitable for superposition, because f (z) is a constant according to the
general solution of Eq. (3).4

Equation (13) represents a relation between the parameters {α, β, γ, δ, ε}
and thus determines a subset of parameters of the problem modelled by
the NLWEE for which further solutions can be generated by superposi-
tion according to Eq. (2). Combining Eqs. (12) and (13) (with α = 0) we
obtain

f (z) = 2e3 − γ

2β
+ 12e2

3 − 3γ 2 + 4βδ

4β(e1 − e3)
sn2(

√
e1 − e3z,m), (14)

where e1, e3 must be chosen as the largest and smallest roots of Eq. (11), respec-
tively, so that the condition (13) is valid for a simple root f0 of Eq. (3) that satisfies
the PDC.

5 We assumed � > 0. If � < 0, substitution of ℘(z) according to Abramowitz et al. (1972), 18.9.11
does not lead to an expression of form (1). Furthermore, as will be seen below, we obtain a polynomial
R(f ) or R(h), h = f 2, of third degree for generating new solutions by linear superposition. But the
PDC is not satisfied for a third-degree polynomial with � < 0, because two of the three roots are
complex conjugate.

6 Since we are interested in physical periodic solutions we can always assume that a simple root exists.
7 If β = 0 holds γ must be negative otherwise Eq. (13) and PDC are not fulfilled. For f0 to be a simple

root δ2 − 3
2 εγ must be positive. If β �= 0 the discriminant � does not vanish, so that f0 = 2e3−γ

2β
is

a simple root of R(f ).
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Equation (14) can be evaluated explicitely subject to the two cases α = 0
and α �= 0, β = δ = 0, respectively. If α = 0 and, for simplicity, ε = 0 the start
solutions for superposition are

f (z)=



−3γ +
√

9γ 2 − 16βδ

4β
dn2

×
(

1

2

√
3γ +

√
9γ 2 − 16βδz,

2
√

9γ 2 − 16βδ

3γ +
√

9γ 2 − 16βδ

)
, βδ> 0, γ > 0,

4δ

−3γ +
√

9γ 2 − 16βδ
sn2

×
(

1

2

√
−3γ +

√
9γ 2 − 16βδz,

3γ +
√

9γ 2 − 16βδ

3γ −
√

9γ 2 − 16βδ

)
, βδ> 0, γ <0,

−3γ +
√

9γ 2 − 16βδ

4β
cn2

×
(

(9γ 2 − 16βδ)
1
4√

2
z,

3γ +
√

9γ 2 − 16βδ

2
√

9γ 2 − 16βδ

)
, βδ < 0,

(15)
where the various possibilities to satisfy (11) and (13) have been taken into ac-
count and � = 4β2δ2(9γ 2 − 16βδ) > 0 is necessary and sufficient to fulfill PDC
(Bronstein et al., 2000).

If α �= 0, β = δ = 0 the start solutions read

h(z) =



−3γ +
√

9γ 2 − αε

α
dn2

×
(√

3γ +
√

9γ 2 − αεz,
2
√

9γ 2 − αε

3γ +
√

9γ 2 − αε

)
, α< 0, γ > 0, ε < 0,

ε

−3γ +
√

9γ 2 − αε
sn2

×
(√

−3γ +
√

9γ 2 − αεz,
3γ +

√
9γ 2 − αε

3γ −
√

9γ 2 − αε

)
, α>0, γ < 0, ε>0,

−3γ +
√

9γ 2 − αε

α
cn2

×
(√

2(9γ 2 − αε)
1
4 z,

3γ +
√

9γ 2 − αε

2
√

9γ 2 − αε

)
, α < 0, ε > 0,

(16)
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where � = 64α2ε2(9γ 2 − αε) > 0 and - according to the Cartesian sign rule -
three numbers of sign reversals in the sequence of coefficients of R(h) or � > 0
and α > 0 and two sign reversals to fulfill PDC.

To sum up, Eqs. (15) and (16) represent all elliptic solutions with α = 0,
ε = 0 and α �= 0, β = δ = 0, respectively, that are suitable for the the procedure
suggested by Khare and Sukhatme. “All elliptic" means that the solutions presented
in Cooper et al. (2002) and Khare et al. (2002b) are particular cases of Eqs. (15)
and (16). “Suitable" includes that the superposition procedure may fail if solutions
according to Eq. (15) or (16) are inserted into the NLWEE in question leading
to conditions that cannot be evaluated with respect to vp (cf. Eq. (2)) because
the associated relations between Jacobian functions are unknown (cf. Section
3.). Examples to obtain superposition solutions are presented in the following.
Equation (14) can be evaluated in the same manner subject to the PDC to obtain
physical elliptic solutions if the simplifying assumption ε = 0 does not hold.

3. SUPERPOSITION SOLUTIONS OF THE GENERALIZED
MODIFIED KADOMTSEV-PETVIASHVILI EQUATION

The approach outlined in the previous section can be elucidated by inves-
tigation of the gmKPE (Superposition solutions of the NLCQSE are presented
in A.)

ψxt + ((a + bψq)ψqψx)x + cψxxxx − σ 2ψyy = 0, (17)

where a, b, c, q, σ 2 are real constants. As shown previously (Schürmann et al.,
2004a) elliptic traveling-wave solutions to Eq. (17) exist. The set of these solutions
is determined by

ψ(x, y, t) = f (z)1/q, q �= 0,

z = x + ky + vt, (18)

f 2
z = αf 4 + 4βf 3 + 6γf 2 + 4δf + ε,

where α, β, γ , δ, ε are given by Eqs. (16a)–(16g) in Schürmann et al. (2004a). As
shown above, the conditions α = 0 or β = δ = 0, α �= 0 lead to suitable solutions.
Imposing additionally the PDC and condition (13), respectively, the parameters of
solutions (18) are

q = 1

2
, α = − b

12c
, β = 0, γ = k2σ 2 − v

24c
, δ = 0, ε �= 0, c �= 0,

(19)

q = 1, α = 0, β = − a

12c
, γ = k2σ 2 − v

6c
, ε = 0, c �= 0, (20)
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q = 1, α = − b

6c
, β = 0, γ = k2σ 2 − v

6c
, δ = 0, ε �= 0, c �= 0,

(21)

q = 2, α = 0, β = − a

6c
, γ = 2(k2σ 2 − v)

3c
, ε = 0, c �= 0. (22)

Referring to (19) and (20) first, solutions according to (16) and (15), respec-
tively, have to be evaluated. Inserting (19) into (16), one obtains the suitable start
solutions

ψ(x, y, t) =



B1 dn2 [µ1(x + ky + vt),m1] ,
b

c
> 0,

k2σ 2 − v

c
> 0, ε < 0,

B2 sn2 [µ2(x + ky + vt),m2] ,
b

c
< 0,

k2σ 2 − v

c
< 0, ε > 0,

B3 cn2 [µ3(x + ky + vt),m3] ,
b

c
> 0, ε > 0,

(23)
where Bj , µj , mj are determined by inserting the parameters α, γ , ε according to
(19) into (16). Formally the same result is obtained by inserting (20) into (15).

Referring, secondly, to (21) the solutions follow from (16) as

ψ(x, y, t) =



B1 dn [µ1(x + ky + vt),m1] ,
b

c
> 0,

k2σ 2 − v

c
> 0, ε < 0,

B2 sn [µ2(x + ky + vt),m2] ,
b

c
< 0,

k2σ 2 − v

c
< 0, ε > 0,

B3 cn [µ3(x + ky + vt),m3] ,
b

c
> 0, ε > 0,

(24)

where (again) Bj , µj , mj are determined from (16) with parameters according to
(21). Formally the same results are given by (22) and (15).

According to Eq. (2) the first solution in (24) leads to a superposition solution
for p = 2

ψ̃(x, y, t) = B

2∑
i=1

dn (µ(x + ky + v2t) + (i − 1)K(m),m) ,

(25)
B = B1, µ = µ1,m = m1.



1100 Schürmann, Serov, and Nickel

Inserting ψ̃(x, y, t) (denoting di = dn (µ(x + ky + v2t) + (i − 1)K(m),m))
into Eq. (17) (a = 0, because β = 0 according to (21)) we get

(−Bmµv2 − Bcµ3(2m − m2))
d

dx

2∑
i=1

sici + σ 2Bmµk
d

dy

2∑
i=1

sici

+ 2bB3m2µ2
2∑

i=1

di

(
2∑

i=1

sici

)2

− mµbB3

(
2∑

i=1

di

)2
d

dx

2∑
i=1

sici

+ 6Bcmµ3 d

dx

2∑
i=1

d2
i sici = 0. (26)

The last three terms of Eq. (26) can be simplified as follows.
Using d1d2 = √

1 − m and c1s1d2 + c2s2d1 = 0 (Khare et al., 2002a,
Eqs. (31), (39)) we obtain(

2∑
i=1

di

)2 2∑
i=1

sici =
2∑

i=1

d2
i sici + √

1 − m

2∑
i=1

sici . (27)

Evaluating d
dx

((
∑2

i=1 di)2 ∑2
i=1 sici) and using Eq. (27), Eq. (26) can be

rewritten as

(−Bmµv2 − Bcµ3(2m − m2) − mµbB3
√

1 − m)
d

dx

2∑
i=1

sici

+ σ 2Bmµk
d

dy

2∑
i=1

sici + Bmµ
(
6cµ2 − bB2) d

dx

2∑
i=1

d2
i sici = 0. (28)

The expression (6cµ2 − bB2) vanishes identically.8 With d
dy

∑2
i=1 sici =

k d
dx

∑2
i=1 sici Eq. (28) reads

(−Bmµv2 − Bcµ3(2m − m2) − mµbB3
√

1 − m + σ 2Bmµk2)

× d

dx

2∑
i=1

sici = 0, (29)

so that the speed v2 is given by

v2 = −cµ2(2 − m) − bB2
√

1 − m + σ 2k2. (30)

8 If parameters according to Eqs. (21) are inserted into Eq. (16) one obtains B, µ, m so that 6Bcmµ3 −
mµbB3 in Eq. (28) vanishes identically.
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Fig. 1. The start solution ψ(z) (cf. first solution of Eq. (24)) and
the superposition solution ψ̃(z) (cf. Eq. (25)) for α = −2, γ = 4,
ε = −1, z = x + ky + vt and z = x + ky + v2t , respectively.

Thus, we have found a superposition solution of Eq. (17) for this particular
case.

The start solution and the superposition solution are shown in Fig. 1.
We can generate superposition solutions for p = 3 from (23). As an example

we consider the solution of the form dn2 in detail and compare it with the results
of Cooper et al. (2002). According to Eq. (2) the superposition ansatz reads

ψ̃(x, y, t) = B

3∑
i=1

dn2

(
µ(x + ky + v3t) + 2(i − 1)K(m)

3
,m

)
,

B = B1, µ = µ1,m = m1. (31)

Inserting ψ̃(x, y, t) (denoting di = dn(µ(x + ky + v3t) + 2(i−1)K(m)
3 ,m))

into Eq. (17), we obtain

2Bmµ(v3 + 8cµ2 − 4cmµ2)
d

dx

3∑
i=1

disici + 2σ 2Bmµk
d

dy

3∑
i=1

disici

+ 4B2bm2µ2

(
3∑

i=1

disici

)2

− 2B2bmµ

3∑
i=1

d2
i

d

dx

3∑
i=1

disici

+ 24Bcmµ3 d

dx

3∑
i=1

d3
i sici = 0. (32)
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The last three terms can be rewritten as

−2B2bmµ

−2mµ

(
3∑

i=1

disici

)2

+
3∑

i=1

d2
i

d

dx

3∑
i=1

disici

−12
cµ2

bB

d

dx

3∑
i=1

d3
i sici

)
, (33)

whereas evaluation of d
dx

(
∑3

i=1 d2
i

∑
j �=i dj sj cj ) yields

d

dx

 3∑
i=1

d2
i

∑
j �=i

dj sj cj

 = −2mµ

(
3∑

i=1

disici

)2

+
3∑

i=1

d2
i

d

dx

3∑
i=1

disici

+ 2mµ

3∑
i=1

d2
i s2

i c2
i −

3∑
i=1

(
d2

i

d

dx
disici

)

= −2mµ

(
3∑

i=1

disici

)2

+
3∑

i=1

d2
i

d

dx

×
3∑

i=1

disici − d

dx

3∑
i=1

d3
i sici . (34)

Because 12 cµ2

bB
= 1 (in Eq. (33)) holds identically, we can use Eq. (34) and

(Khare et al., 2002b, Eq. (11))

d

dx

 3∑
i=1

d2
i

∑
j �=i

dj sj cj

 = A(3,m)
d

dx

3∑
i=1

disici , (35)

to rewrite Eq. (32) as

−2Bmµ(v3 + 8cµ2 − 4cmµ2 + BbA(3,m))
d

dx

3∑
i=1

disici

+ 2σ 2Bmµk
d

dy

3∑
i=1

disici = 0. (36)

Using d
dy

∑3
i=1 disici = k d

dx

∑3
i=1 disici this equation reads

−2Bmµ(v3 + 8cµ2 − 4cmµ2 − σ 2k2 + BbA(3,m))
d

dx

3∑
i=1

disici = 0. (37)
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Fig. 2. The start solution ψ(z) (cf. first solution of Eq. (23)) and
the superposition solution ψ̃(z) (cf. Eq. (31)) for α = −1, γ = 1,
ε = −1, z = x + ky + vt and z = x + ky + v3t , respectively.

Thus, the speed v3 in the superposition solution (31) (of a particular case) of
Eq. (17) is given by

v3 = 4cmµ2 + σ 2k2 − 8cµ2 − BbA(3,m). (38)

The start solution and the superposition solution are shown in Fig. 2.
Applying an analogous procedure with the ansatz

ψ̃(x, y, t) = B

3∑
i=1

sn2

(
µ(x + ky + v3t) + 2(i − 1)K(m)

3
,m

)
,

B = B2, µ = µ2, m = m2 (39)

and with the ansatz

ψ̃(x, y, t) = B

3∑
i=1

cn2

(
µ(x + ky + v3t) + 2(i − 1)K(m)

3
,m

)
,

B = B3, µ = µ3, m = m3 (40)

we obtain superposition solutions with

v3 = 4cmµ2 + 4cµ2 + σ 2k2 + Bb
A(3,m) − 2

m
(41)

for solution (39) and

v3 = −8cmµ2 + 4cµ2 + σ 2k2 − Bb
A(3,m) − 2(1 − m)

m
(42)

for solution (40).
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In deriving (41) and (42) we have used the relations

d

dx

 3∑
i=1

s2
i

3∑
j �=i

sj cj dj

 = − 1

m
(A(3,m) − 2)

d

dx

3∑
i=1

sicidi (43)

and

d

dx

 3∑
i=1

c2
i

3∑
j �=i

sj cj dj

 = 1

m
(A(3,m) − 2(1 − m))

d

dx

3∑
i=1

sicidi , (44)

respectively, which follow from Eq. (35) and well known relations between Jaco-
bian elliptic functions.

Comparison of the Kadomtsev-Petivashvili equation together with the ansatz
considered by Cooper, Khare and Sukhatme (Cooper et al., 2002, Eqs. (1),(4))with
the Eqs. (17), (19) and (31) shows that, apart from an additive constant (Jaworski
et al., 2003), our result (38) is consistent with that of (Cooper et al., 2002, Eq.
(11), β = 0) .The cases related to (41), (42) have not been considered in Cooper
et al. (2002).

To conclude, we note that real and bounded suitable solutions of the gmKPE
only exist for four different values of q (cf. (19)–(22)), though there is no restric-
tion for q (apart from being real) of the known elliptic solutions of the gmKPE
(Schürmann et al., 2004a).

The second of Eqs. (24) does not lead to a superposition solution although
the solution has the form (1).9 In this case, it seems that an appropriate identity
for Jacobian elliptic functions does not exist. Thus, the claim at the end of Cooper
et al. (2002) seems to strong.

4. SUMMARY AND CONCLUDING REMARKS

By combining the superposition principle and symmetry reduction we ob-
tained general elliptic solutions suitable for superposition. The results were applied
to the gmKP Eand the NLCQSE (see Appendix). In Cooper et al. (2002) partic-
ular elliptic solutions for generating superposition solutions of the NLSE and the
KPE were used. As outlined above we start from (general) suitable solutions (cf.
Eqs. (15), (16), (23), (24)) to obtain superposition solutions more general than
those in Cooper et al. (2002). We note that there are no restrictions in advance for

9 An ansatz ψ̃ = cn or ψ̃ = sn (cf. Eq. (25)) leads to equations which have the form (26). Because
there is no relation c1c2 = const. and s1s2 = const., respectively, there is no possibility to replace

the appearing sums
∑

ci

(∑
disi

)2
,
(∑

ci

)2 d
dx

∑
disi and

∑
si

(∑
cidi

)2
,
(∑

si

)2 d
dx

∑
cidi , re-

spectively. Up to our knowledge there is no appropriate relation involving Jacobian elliptic functions
that would simplify the equations similar to (26), so that the speed v2 for which ψ̃ is a solution of
Eq. (17) cannot be determined.
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the coefficients of the NLSE and the KPE. Constraints result from the condition
that suitable solutions exist (cf. Eq. (13)) and from the PDC. As is obvious from
the following Table I there are rather many NLWEEs that exhibit suitable elliptic
solutions. Thus, it seems interesting to check whether they lead to superposition
solutions by applying Eqs. (15) and (16).
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APPENDIX: SUPERPOSITION SOLUTIONS OF THE NONLINEAR
CUBIC-QUINTIC SCHRDINGER EQUATION (NLCQSE)

Following the lines described in Sections 1. and 2. the NLCQSE

iψt + ψxx − (q1|ψ |2 + q2|ψ |4)ψ = 0, (45)

(q1, q2 real constants) can be solved by applying the transformation

ψ(x, t) = f (z) exp[i(λt + r(z))], z = x − ct. (46)

Separating real and imaginary parts, we obtain

q1f (z)3 + q2f (z)5 − f ′′(z) + f (z)(λ − cr ′(z) + r ′(z)2) = 0, (47)

f ′(z)(c − 2r ′(z)) − f (z)r ′′(z) = 0, (48)

where the prime denotes differentiation with respect to z.
Equation (48) can be integrated to yield

r ′(z) = c

2
+ C1

f (z)2
, (49)

with C1 a constant of integration.
Inserting r ′(z) into Eq. (47) and integrating the resulting expression leads to

an equation where h = f 2 can be introduced. Thus, we find a basic equation R(h)
(cf. Eq. (3), f → h) with the following coefficients:

α = 4

3
q2, β = 1

2
q1, γ = 4λ − c2

6
, δ = 2 C2, ε = −4 C2

1 , (50)

where C2 is a constant of integration.
If q2 = 0 and C1 = 0 all physical solutions suitable for superposition are

represented by Eqs. (15) (f → h). The superposition solutions for p = 3 are
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given by (cf. Eqs. (2), (46))

ψ̃(x, t) = a

3∑
i=1

cn

[
µ(x − v3t)+4(i − 1)K(m)

3
,m

]
exp

{
i
[
λt + (x − v3t)

v3

2

]}
,

v2
3 = 4(λ − µ2(2mX(3,m) + (2m − 1))), (51)

ψ̃(x, t) = a

3∑
i=1

dn

[
µ(x − v3t)+ 2(i − 1)K(m)

3
,m

]
exp

{
i
[
λt + (x − v3t)

v3

2

]}
,

v2
3 = 4(λ + µ2(m − 2) − aW (3,m)), (52)

ψ̃(x, t) = a

3∑
i=1

sn

[
µ(x − v3t) + 4(i − 1)K(m)

3
,m

]
exp

{
i
[
λt+(x − v3t)

v3

2

]}
,

v2
3 = 4(λ + µ2(m + 1) + 2maµ2V (3,m)). (53)

To evaluate the speed v3 we have used in Cooper et al. (2002) the Eqs. (8),
(70), (72), Eqs. (8), (66), (68) and Eqs. (8), (57), (59), respectively.

It should be mentioned that the start solutions (15) suitable for superposition
are consistent with those of Cooper et al. (2002). Nevertheless, the speed v3 ac-
cording to Eqs. (51), (52), (53) is not identical with v3 according to Eqs. (33), (28),
(45) in Cooper et al. (2002). Thus, the superposition solutions are not determined
uniquely. Different identities between Jacobian elliptic functions used lead to
(in general) different superposition solutions. Applying the procedure outlined in
Section 2. if q2 �= 0 (α �= 0), β = δ = 0, ε arbitrary, PDC implies either q2 = 0
(α = 0) or C2

1 = 0 (ε = 0). The choice q2 = 0 (in addition to q1 = 0 (β = 0)) is
not of interest, because it leads to a linear Eq. (45). For C2

1 = 0 we obtain solitary
traveling-waves. Thus, since ψ(x, t) is not periodic, superposition solutions are
not possible in this case.
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